5 research outputs found

    Design and Electronic Implementation of Machine Learning-based Advanced Driving Assistance Systems

    Get PDF
    200 p.Esta tesis tiene como objetivo contribuir al desarrollo y perfeccionamiento de sistemas avanzados a la conducción (ADAS). Para ello, basándose en bases de datos de conducción real, se exploran las posibilidades de personalización de los ADAS existentes mediante técnicas de machine learning, tales como las redes neuronales o los sistemas neuro-borrosos. Así, se obtienen parámetros característicos del estilo cada conductor que ayudan a llevar a cabo una personalización automatizada de los ADAS que equipe el vehículo, como puede ser el control de crucero adaptativo. Por otro lado, basándose en esos mismos parámetros de estilo de conducción, se proponen nuevos ADAS que asesoren a los conductores para modificar su estilo de conducción, con el objetivo de mejorar tanto el consumo de combustible y la emisión de gases de efecto invernadero, como el confort de marcha. Además, dado que esta personalización tiene como objetivo que los sistemas automatizados imiten en cierta manera, y siempre dentro de parámetros seguros, el estilo del conductor humano, se espera que contribuya a incrementar la aceptación de estos sistemas, animando a la utilización y, por tanto, contribuyendo positivamente a la mejora de la seguridad, de la eficiencia energética y del confort de marcha. Además, estos sistemas deben ejecutarse en una plataforma que sea apta para ser embarcada en el automóvil, y, por ello, se exploran las posibilidades de implementación HW/SW en dispositivos reconfigurables tipo FPGA. Así, se desarrollan soluciones HW/SW que implementan los ADAS propuestos en este trabajo con un alto grado de exactitud, rendimiento, y en tiempo real

    An eco-driving approach for ride comfort improvement

    Get PDF
    [EN] New challenges on transport systems are emerging due to the advances that the current paradigm is experiencing. The breakthrough of the autonomous car brings concerns about ride comfort, while the pollution concerns have arisen in recent years. In the model of automated automobiles, drivers are expected to become passengers, so, they will be more prone to suffer from ride discomfort or motion sickness. Conversely, the eco-driving implications should not be set aside because of the influence of pollution on climate and people's health. For that reason, a joint assessment of the aforementioned points would have a positive impact. Thus, this work presents a self-organised map-based solution to assess ride comfort features of individuals considering their driving style from the viewpoint of eco-driving. For this purpose, a previously acquired dataset from an instrumented car was used to classify drivers regarding the causes of their lack of ride comfort and eco-friendliness. Once drivers are classified regarding their driving style, natural-language-based recommendations are proposed to increase the engagement with the system. Hence, potential improvements of up to the 57.7% for ride comfort evaluation parameters, as well as up to the 47.1% in greenhouse-gasses emissions are expected to be reached.University of the Basque Country UPV/EHU, Grant/Award Number: GIU18/122; European Commission, Grant/Award Number: TEC201677618-R; Spanish AEI, Grant/Award Number: TEC2016-77618-R; Basque Government, Grant/Award Number: KK-2019-00035-AUTOLIB (ELKARTEK

    An Intelligent System-on-a-Chip for a Real-Time Assessment of Fuel Consumption to Promote Eco-Driving

    Get PDF
    Pollution that originates from automobiles is a concern in the current world, not only because of global warming, but also due to the harmful effects on people’s health and lives. Despite regulations on exhaust gas emissions being applied, minimizing unsuitable driving habits that cause elevated fuel consumption and emissions would achieve further reductions. For that reason, this work proposes a self-organized map (SOM)-based intelligent system in order to provide drivers with eco-driving-intended driving style (DS) recommendations. The development of the DS advisor uses driving data from the Uyanik instrumented car. The system classifies drivers regarding the underlying causes of non-optimal DSs from the eco-driving viewpoint. When compared with other solutions, the main advantage of this approach is the personalization of the recommendations that are provided to motorists, comprising the handling of the pedals and the gearbox, with potential improvements in both fuel consumption and emissions ranging from the 9.5% to the 31.5%, or even higher for drivers that are strongly engaged with the system. It was successfully implemented using a field-programmable gate array (FPGA) device of the Xilinx ZynQ programmable system-on-a-chip (PSoC) family. This SOM-based system allows for real-time implementation, state-of-the-art timing performances, and low power consumption, which are suitable for developing advanced driving assistance systems (ADASs).This work was supported in part by the Spanish AEI and European FEDER funds under Grant TEC2016-77618-R (AEI/FEDER, UE) and by the University of the Basque Country under Grant GIU18/122

    Analysis of the Motion Sickness and the Lack of Comfort in Car Passengers

    Get PDF
    Advanced driving assistance systems (ADAS) are primarily designed to increase driving safety and reduce traffic congestion without paying too much attention to passenger comfort or motion sickness. However, in view of autonomous cars, and taking into account that the lack of comfort and motion sickness increase in passengers, analysis from a comfort perspective is essential in the future car investigation. The aim of this work is to study in detail how passenger’s comfort evaluation parameters vary depending on the driving style, car or road. The database used has been developed by compiling the accelerations suffered by passengers when three drivers cruise two different vehicles on different types of routes. In order to evaluate both comfort and motion sickness, first, the numerical values of the main comfort evaluation variables reported in the literature have been analyzed. Moreover, a complementary statistical analysis of probability density and a power spectral analysis are performed. Finally, quantitative results are compared with passenger qualitative feedback. The results show the high dependence of comfort evaluation variables’ value with the road type. In addition, it has been demonstrated that the driving style and vehicle dynamics amplify or attenuate those values. Additionally, it has been demonstrated that contributions from longitudinal and lateral accelerations have a much greater effect in the lack of comfort than vertical ones. Finally, based on the concrete results obtained, a new experimental campaign is proposed.This research was funded by Basque Government for partial support of this work through the project KK-2021/00123 Autoeval and the University of the Basque Country UPV/EHU under Grant GIU18/122

    An FPGA-Based Neuro-Fuzzy Sensor for Personalized Driving Assistance

    Get PDF
    Advanced driving-assistance systems (ADAS) are intended to automatize driver tasks, as well as improve driving and vehicle safety. This work proposes an intelligent neuro-fuzzy sensor for driving style (DS) recognition, suitable for ADAS enhancement. The development of the driving style intelligent sensor uses naturalistic driving data from the SHRP2 study, which includes data from a CAN bus, inertial measurement unit, and front radar. The system has been successfully implemented using a field-programmable gate array (FPGA) device of the Xilinx Zynq programmable system-on-chip (PSoC). It can mimic the typical timing parameters of a group of drivers as well as tune these typical parameters to model individual DSs. The neuro-fuzzy intelligent sensor provides high-speed real-time active ADAS implementation and is able to personalize its behavior into safe margins without driver intervention. In particular, the personalization procedure of the time headway (THW) parameter for an ACC in steady car following was developed, achieving a performance of 0.53 microseconds. This performance fulfilled the requirements of cutting-edge active ADAS specifications.This work was supported in part by the Spanish AEI and European FEDER funds under Grant TEC2016-77618-R (AEI/FEDER, UE)
    corecore